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Abstract 

A systematic method for fitting Rydberg- -Kle in-Rees  (RKR) data x~ith poly- 
nomial expressions is presented. The procedure is based on a change of variables 
that takes into account the form of the potential energy curve for large inter- 
nuclear distances. The coefficients of the polynomial are determined by least squares. 
Results are presented for CO, HgH, and Arz. The form of the potential energy 
curves obtained is quite reasonable and the dissociation energies calculated are in 
satisfactory agreement with experimental data. 

1. Introduction 

Within the context of the Born-Oppenhe imer  approximation [1,2],  the 
potential energy for the motion of the nuclei is given by a function U(R), of the 
nuclei coordinate vector R. As is well known, the function U(R) is given as the sum 

U(R) = VNN + V(R), (1) 

wherë VNN is the nuclear-nuclear repulsion energy and V(R) the electronic energy 
function, which is the eigenvalue of the so-called electronic Hamiltonian. Knowledge 
of the function U(R) is of utmost  importance for the qualitative and quantitative 

*Grupo de Quimica Teórica, Departamento de Quimica, Universidad Nacional de Colombia, 
¢ 

Bogota D.E., Colombia. 
*Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada 

S7N 0W0, to whom correspondence should be addressed. 

© J.C. Baltzer AG, Scientific Publishing Company 



218 J.L. Villaveces et  al.. R K R  «urves o f  d ia tomic  covalent  molecules  

understa3ding of molecular phenomena. The t'unction U ( R )  (vibrational potential) 
can be obtained by solving systematicalty the eigenvalue equation for the electronic 
Hamiltonian for a whole set of values of  R [2]. However, the procedure requires a 
great deal of computation, and the results may depend on the particular algorithm 
used. 

Alternatively, U(R) may be constructed from spectroscopic data. Several 
methods have been proposed to this end (see, for example, refs. [3 - 7 ]  ), but the most 
exact one seems to be that developed by Rydberg, Klein and Rees (RKR) [ 8 - 1 0 ] .  
This procedure is particularly simple in the case of diatomic molecules, whose vibra- 
tional potential is completely specified by a single parameter R. From now on, we 
shall restrict ourselves to this case. 

The RKR method allows one to compute the classical turning points from 
the knowledge of spectroscopic data (the rotovibrational energies). In the case of 
diatomic molecules, the technique can be fonnulated easily following the approach 
discussed in reis. [9] and [11], which makes use of the semiclassical quantization 
rule (JWKB approximation up to the first order [12]). Once the turning points for 
each vibrational energy level are obtained, one knows only a small part of the poten- 
tial energy curve. The task that one now faces is to reconstruct the function U(R) 
from these results. 

A great deal of attention has been devoted to the construction of analytical 
expressions for the interatomic potential U(R),  based on spectroscopic data. since 
Dunham [13] first proposed the power series representation 

U ( R )  = a o x  2(1 + a  l)t  + a  2 X 2 + . . . ) ;  X = (R  - R e ) / R  e . (2) 

Equation (2) is a reasonable approximation near the equilibrium distance R e. How- 
ever, it does not converge beyond R = 2R e because the potential U(R)  is singular 
at R = 0. Actually, its fange of usefulness is quite smaller because the so-called 
Dunham coefficients a i are not always very reliable or easy to compute up to a large 
order, even when a large number of turning points are known. 

Several methods summarized by the expression 

U(R) : c o f (X)  2 {1 + e 1 f(X) + c 2 f (X)  2 + . . .  } , (3) 

have been proposed to overcome these limitations [14--16] ,  and they have been 
briefly reviewed elsewhere [4 7]. Different changes of variable X -+ f(X) are avail- 
able to improve, to a certain extent, the convergence properties of the Dunham series. 
Padé approximants, built from eq. (2), have also been studied [17]. Although each of 
the above procedures presents some advantages, none is cornpletety satisfactory. In 
particular, they fail to reproduce the correct asymptotic behavior of U ( R )  for large 
internuclear separations. In order to derive better representations for the potential, 
it would be important to incorporate in an efficient way the information available 
for both the equilibrium and the infinite separation regimes. 
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In this paper, we suggest a new procedure to combine the RKR points with 
theoretical information about the behavior at infinite separation, in order to build 
analytically the whole potential energy curve. The essential feature of  this method 
is a combination of least-squares fitting with techniques of analytical continuation 
of  series expansions. We apply it for covalent diatomic molecules because the results 
obtained for this case are usually less accurate, a fact that makes them a good test for 
the method.  FurtherInore, a larger number of  values of turning points are known for 
covalent molecules than for ionic compounds. The procedure is outlined in sect. 2, 
and applied to some covalent diatomic molecules in sect. 3. Further comments are 
found in sect. 4. 

2. T h e  m e t h o d  

Let R e be the internuclear distance at the mininmm of U(R).  The function 

F(X) = X -2 U(R),  (4) 

where X = (R - Re)/Re, is supposed to obey expansions of the form: 

¢:X3 

F(X) = Z l ~ . X  i , (5a) 
i = 0  

o o  

F(X) = X a Z j'iX öl, b < 0, (Sb} 
/ = 0  

about X = 0 and 1/X = 0, respectively. The real numbers a and b define the large-R 
behavior. In the case of  using the Dunham series (cf. eq. (2)), we have F i = aia o, 

i =  1 , 2 , . . , a n d F  o = a o, 
The basis of  out approach is the transformation 

X = wKUb(1  - W )  1/b , (6) 

that maps 0 ~< X < ~o onto 0 ~< w ~< 1. Here, K is a real, positive parameter that allows 
us to control the transfonnation in order to generate a sequence of polynomials that 

approaches F(X). The function 

S(K, w) = K-al»(1 - w) - a / b F ( x ( w ) ) ,  (7) 

remains infinite for all X values, and in particular: 

S(K, w--* 1) = lim X-aF(X) = •ò . (8) 
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It can easily be shown that the Taylor expansion of  S(K, w) in power series of w, 
ab out w = 0, 

S(K w) Z ~- " = o,,(K) ~~ , (9) 
t] = 0  

has coefficients % given by: 

on(K) = Z ( - 1 ) n - i ( ( i - a ) / b  I FiK(i-a)/b (10) 
i=o \ n - i  / ' 

where ({;) = c(c - 1)(c - 2) . . .  (c - i + 1)/i! is the usual binomial coefficient. By 
contmction (of. eqs. (6) and (7)), the function S(K, w) possesses the correct basic 
analytic behavior expected for the exact function F(X). Furthermore, the bounded 
character of the variable w guarantees, at least, slowing the divergence of tl.e original 
series in powers of  X. These two important properties allow us to provide an accurate 
representation of the unknown i\mction of interest, F(•), from the knowledge of a 
number of  Taylor coefficients F/ [7,8,18,19].  In this paper, we explore another 
possibility that is bettet suited to the problem posed, by use of the results provided 
by the RKR method. Nevertheless, in any case this analytical representation is quali- 
tatively correct over the whole range of  values of X. 

It is assumed that the sequence of partial sums 

N 

sN(~',w) = Z o,,(K)w" 
tl = 0  

(i I) 

converges towards S(K, w) as N tends to infinity. Suppose now that we do not have 
a set of Taylor coefficients F/ as input information, but that a set of pairs of values 
(}ki, F(Xi)), i = 1, 2, . . . , 2M is available instead. For example, these 2M points 

may represent M pairs of  left and right classical turning points. In this case, we can 
make use of the polynomials SN(K, w) to fit this set of points: 

G i = ( w i / ) k i )  a F(Xi ) ,  i = 1,2, . . . , 2M, (12) 

and to choose the coefficients oi(K ) so that 

2M 

B = (1/2M) Z [Gi -  SN(K, wi)] 2, (13) 
i=0 

is as small as possible. This is equivalent to a least-squares evaluation of S N (K, ~t). As 
B,« depends on K, it is not uniquely determined by eq. (13). Accordingly, we need an 
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appropriate criterion to choose an optimum value for K. In our case, we search K in 
such a way that 

B = J , j ( K * )  = min J~/ (K) ,  (14) 
Ic} 

and evaluate F(X) by means of the sequence SN(K*, w). The optinmm values of 
on(K ), K, and the minimum of J will be denoted by o,~', K*, and J*  respectively. 

The behavior of the potential energy function U(R), for diatomic covalent 
molecules, at large internuclear distances has been the subject of numerous studies 
(see, for example, [20] and [21], and refs. quoted therein). The leading tenn depends 
on the nature of the atoms fomaing the molecule (open- or closed-shell atoms). In 
order to illustrate briefly our procedure, we consider hefe only the contribution due to 
van der Waals forces between atoms. That is, the potential energy should satisfy an 
expression of the type: 

U(R) = D + C/R 6 + . . . .  (15) 

Since from eq. (14) we have for the function F(X) 

~' (x )  = x -2 (D'  + C"/X 6 + . . .  ), ( 16 !  

we may choose the exponents a and b in eq. (5b) as follows: a = - 2  and b = - 6 .  We 
notice that eq. (15) is not an expansion in power series of R -6. Furthermore, as 
mentioned, some terms may be omitted (for instance, the one due to the polarization 
of an atom in the field of the other). Nevertheless, we shall adopt these two values for 
a and b because they correctly give us at least: the two leading terxns in the behavior 
of U(R) for very large R tor a number of molecules. Other cases can be treated by 
simply choosing a different value of b. 

3. Results and discussion 

The electronic ground state of the CO molecule is one of the most studied 
ones. We use the RKR points and the value R e = 1.128341 ~~ reported by Mantz et al. 
[22]. The K* values found for N = 5 to 8 are shown in table 1, together with the 
calculated values for the dissociation energy, computed as: 

D N = SN(K, 1). (17) 

The agreement with the experimental result can be considered as remarkable, taking 
into account that the RKR points fitted do not lie near the top of the well (that is, 
they do not depart too much from the equilibrium interatomic distance). Therefore, 
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Table 1 

Minimum of the functional JN, predicted dissociation energies, and percent devia- 
tions for a series of molecules. [,5 N = 100 (1 -DN/Dexp)]  

Molecule N K* * K* JN ( ) D N ( c m - ' )  6 N 

CO 5 43 29.16 74773.5 17.42 
6 60 4.85 75362.4 16.77 
7 45 4.46 76720.3 15.27 
8 67 2.51 75902.5 16.17 

Hgtt 6 7800 1.75 3218.0 13.06 
7 4500 1.26 3300.9 10.82 
8 5000 1.08 3321.9 10.25 
9 7500 0.53 3299.4 10.86 

Ar 2 6 300 000 6.64 76.8 23.21 
7 300 000 6.62 77.0 22.96 
8 300 000 6.39 77.8 22.16 
9 300 000 5.43 79.2 20.75 
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Fig. 1. Potential energy curve U(R) for the CO molecule. 
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we conclude that the change of variables (6) takes properly into account the form of 
the function U(R) at large internuclear distances. The potential energy curves obtained 
have been drawn in fig. 1. 

Oexp 

N 6 

Fig. 2. Potential energy curve U(R) for the HgH molecule.  

As a second example, we used the RKR points for the HgH molecule, calcu- 
lated by Stwalley [3], to fit an analytical potential for this molecule, using Ns value of  
R e = 1.73469 A. Table 1 and fig. 2 display the results obtained. The values of  J~ 
obtained for this molecule are smaller than those in the previous example, and the 
K* values are much larger. 

Colbourn and Douglas [23] constructed an RKR function, that we use together 
with their value of  R e = 3.759 Ä to perfoml a new example. Results are given in 
table 1 and fig. 3. Both the fitting of the potential energy curve and the agreement 
with the experimental dissociation energy are in th_is case poorer than in the previous 
two examples, because a smaller number of RKR points is available and they are less 
accurate. Comparing the K* values for the three molecules in table 1, we conclude 
that the weaker the covalent bond, the larger the K* vNues. 
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lig. 3. Potential cnergy curve U(R) for the Ar 2 molecule. 
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4. F u r t h e r  c o m m e n t s  

Hefe, it is worthwhile to make a comparison of  our results for the dissociation 
energies with those obtained by other authors (see also ref. [6] for a discussion). As 
a most studied ex~maple, we choose the CO molecule. Only Thakkar's method [15] 
seems to be numerically bettet  than ours, since it gives a deviation of 8 ~ -3 .6% 
(against our result of  23.0%). However, his series is defective in that it has an un- 
physical maximuin at R ,-~ 5R e, as pointed out by Engelke [4]. This problem is 
shared by the Simons Pa r r -F in l an  series [12],  which for N = 4 shows a distinct 
maximum at R ~ 2.4 R e (and the potential function gives an exaggerate deviation 
of  ~ ~ 2297~ for the dissociation energy). Another inethod in the literature (ref. [17] ) 
also largely overestimates the results, leading to a deviation of  8 -~ 182% for the CO. 
There is also some evidence that the results obtained with these methods (reis. 
[ 1 5 - 1 7 ] )  are not stable along sequences of  increasing values of N (see ref. [6]). 

We notice that the results are less accurate when the dissociation energy is 
ver5, small (i.e. for the less deep potential wells). Nonetheless, no better results are 
available, as rar as we know, for the case of  van der Waals molecules (such as Ar2) 
from the use of  the RKR turning points. 
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Figures 1 - 3  show that the shape of the fitted potential energy curve does not 
substantially change as the number of  terms in the polynomial Sw(K, w) increases. 
This fact suggests that our systematic procedure is quite stable. This is an important 
advantage over other methods [ 1 5 - 1 7 ]  which, as mentioned, show rather large 
variations in the predicted dissociation energies for varying N. 

It should be kept in mind that the technique developed in the present paper 
is not restricted to the fitting of  RKR points, and that the experimental data from 
other sources cma also be handled in a similar fashion. In addition, the method is 
most suitable in those cases where the large-R behavior of U(R) is known before- 
hand, since it can be accurately taken into account by properly choosing the para- 
meters a and b in eqs. (4) and (5). 

It is worth mentioning here that this present technique can be applied even 
in the presence of potential double wells or in the case of  systems with similar 
characteristics due to the occurrence of avoided crossings. These features are frequently 
found, especially at intermediate and long distances. In this case, the input informa- 
tion consists of  the asymptotic behavior of the dissociating state (for example, an 
ionic one) and the turning points corresponding to the dominating state near the 
equilibrium geoinetry (for exanlple, a covalent one). One may think, however, that 
the quality of the results for double wells will not be as good as for single wells, 
because of  the difficulty in describing the position and height of the relative maxi- 
mum. 
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